
53Copyright 1999 by Real-Time Magazine 99-3 (http://www.realtime-info.com)

S
uccessful integration of Java Virtual Machines
(JVMs) with native applications in embedded
systems requires skillful handling of Java

threads. Embedded system designers face a number
of issues when selecting a JVM. One of the most
important of these involves the JVM’s technique for
mapping Java threads to Real-Time Operating System
(RTOS) tasks. Thread mapping affects thread seman-
tics, memory allocation policies, garbage collection
behavior, and the management of the C stacks asso-
ciated with threads.

Today, different Java Virtual Machines offer application
developers three varying approaches to Java thread
mapping: task-per-thread, thread encapsulation, and
thread-to-thread. These approaches have trade-offs
and advantages that programmers are well advised to
consider when planning to incorporate Java into
embedded systems.

The task-per-thread model (see Figure 1), as found in
several JVM implementations, maps a Java thread to
an RTOS task, so that there is one RTOS task for each
Java thread. Under this approach, no separate Java
thread scheduler exists, so the RTOS treats tasks and
threads as equivalent, and retains responsibility for
context switching between Java threads, user tasks,
system tasks, and interrupt service routines.
Additionally, the RTOS must manage the C stacks of
Java threads as well as the stacks of native tasks.

Relying upon the RTOS scheduler to perform Java
thread scheduling may pose some problems. Can

Java thread semantics and locking semantics be
maintained, for example? Are there any unwanted
interactions between Java threads and RTOS tasks, or
between locks on Java objects and RTOS locks?

Another area of concern arises from the fact that RTOS
tasks generally have different semantics than Java
threads. This means the JVM designer must ensure
that Java thread semantics are fully and faithfully sup-
ported by the underlying RTOS.

The thread encapsulation model (see Figure 2), as
found in NSIcom’s JSCP (Software Co-Processor for
Java), eliminates a number of potential problems asso-
ciated with the task-per-thread approach. By placing
the entire JVM, and all Java threads, into a single
RTOS task, thread encapsulation makes all Java
threads invisible to the RTOS. Some UNIX operating
systems that support threads also use this approach
wherein Java threads are encapsulated within a UNIX
process.

Encapsulation methodology frees the RTOS from Java
thread scheduling, as well as the need to manage the
C stacks of Java threads. The two-level Java
thread/RTOS task model considerably simplifies the
management of Java threads. For instance, the sched-
ulers are independent of each other and can be tuned
for their particular operations: In JSCP, the Java thread
scheduler is not interrupt-driven, and so it need not be
reentrant, whereas the RTOS scheduler must be
interruptible and reentrant. When Java threads are

By Marius Gafen,
Executive Vice President of Marketing,
NSIcom Ltd.

Alternative Java Threading Designs
for Real-Time Environments

When using Java in embedded real-time applications, software developers must consider the ways
that Java Virtual Machines (JVMs) handle Java thread mapping. Thread mapping affects JVM
robustness, maintainability, and system resource utilization including memory requirements.
The industry’s three leading Java thread mapping techniques – task-per-thread, encapsulation,
and thread-to-thread – each have very different impacts on application development. Encapsulation
technology, engineered from inception for embedded environments, demonstrates excellent
performance in the embedded environment: it simplifies many aspects of integrating a JVM into
an embedded system, reduces memory requirements, and isolates applications in native code
from unintended influence by Java application code.

Alternative Java Threading Designs
for Real-Time Environments

RTOS

JVM

Java Apps Native Apps

Java
Threads

RTOS
Threads

Figure 1. The task-per-thread mapping model used by
some Java Virtual Machines

RTOS

Native Apps

Java
Threads

RTOS
Threads

JVM

Java Apps

Figure 2. The encapsulation technique used in NSIcom’s
Java Virtual Machine

JAVA

RTM993.qxd 30-08-1999 09:31 Page 53

54 Copyright 1999 by Real-Time Magazine 99-3 (http://www.realtime-info.com)

JAVA

independent of the RTOS, and thus from RTOS task
primitives, Java thread behavior is consistent under dif-
ferent RTOSs.

In the third methodology, the thread-to-thread tech-
nique (see Figure 3), as used by JVMs running under
Microsoft Windows NT, each Java thread is mapped to
an operating system (OS) thread. These threads, in turn,
are contained within a process – a task that does not
share the address space of other tasks. The OS sched-
ules threads irrespective of the process with which they
are associated. Like the task-per-thread model, the
thread-to-thread approach makes it necessary to
match Java thread semantics with OS primitives.

HANDLING C STACKS AND

JAVA STACKS

No matter which threading model is used, every Java
thread has a C stack and a Java stack. The Java stack
contains the execution frames of Java methods. These
Java methods invoke C code, directly or indirectly. Java
calls C code directly via native methods, and indirectly
through the interpreter. Whatever is running, C code is
ultimately executed, and the thread’s C stack is used.

Java stacks are handled in the same way in all imple-
mentations. A buffer large enough to contain 500 stack
items (about 2 KB) is initially allocated, but unlike the C
stack, may be increased as needed.

The Java stack is allocated from this buffer and the
buffer may be extended. If the buffer becomes full
when a new method is executed, a new buffer is allo-
cated and linked to the existing buffer. This processing
occurs in the functions invokeJavaMethod and vari-
ants. These buffers are allocated from the non-
garbage-collected heap.

DIFFERENT WAYS TO MANAGE

C STACKS

Depending upon the underlying threading methodolo-
gy, different JVMs handle C stacks differently. C stacks
contain several kinds of frames: Such functions as
ExecuteJava , FindClassFromClass , and
VerifyClass may mutually call themselves recur-
sively. Each ExecuteJava frame represents the exe-
cution of a single Java method by a single thread.
Recursive functions may also call non-recursive func-
tions. Frames may also have functions that are the
implementations of native methods.

All JVMs check for actual or potential C stack overflow
in various places within the code. When such an over-
flow occurs, these JVMs throw a
StackOverflowException and abort the thread.
JSCP, however, allocates a new page for the C stack
and then allows the application to continue.

JVMs do, however, vary significantly in the way they
implement C stacks. For example, in Sun’s
PersonalJava™, which uses the task-per-thread model,
C stacks are initialized by default to 128 KB. (A different
value may be specified on the invocation command
line). C stacks cannot be grown, so they must be large
enough to accommodate the maximum memory
usage of any thread. To protect against stack overflow,
ExecuteJava and related functions check the current
stack depth. If they detect actual or potential stack
overflow, they abort the thread and throw a
StackOverflowException .

By contrast, the JSCP JVM, based upon encapsulation
technology, allows C stacks to be sized dynamically.
The initial size begins as one page (16 KB) of memo-
ry. In the same places where the JVM in the common
model checks for stack overflow, the JSCP VM also
checks for stack overflow. Whenever the JSCP VM
detects a potential stack overflow, instead of aborting
the thread, it allocates another page of memory, links
this new page to the existing C stack, and then allows
processing to continue. These new pages are allocat-
ed from the non-garbage-collected heap.

SCHEDULING JAVA THREADS

UNDER ENCAPSULATED

JVM ARCHITECTURE

Since the thread scheduler in the JSCP JVM encap-
sulation environment operates independently of the
RTOS task scheduler, it can possess properties that an
RTOS scheduler cannot have. For instance, the JSCP
scheduler is not reentrant, which greatly simplifies its
design. A simpler design is more robust, reliable and
efficient. In addition, the JSCP scheduler drives the var-
ious mechanisms that are responsible for the real-time
portions of the Java application.

Under JSCP’s encapsulation technology, its Java
thread scheduler (SCHD) is a C function that runs as
part of an RTOS task. SCHD’s two main purposes are to
schedule Java threads by priority and to respond to
events generated by external devices. SCHDfaithfully
and fully implements all of the thread scheduling prop-
erties specified in The Java Virtual Machine
Specification. However, unlike some other Java thread
schedulers, JSCP schedules threads on the basis of
time slices, in a non-interruptible fashion.

In operation, JSCP activates the scheduler when a
timer expires and causes the preemption flag to be set.
This user-settable timer is typically given a value
between 20 and 50 milliseconds. JSCP checks to see
if the preemption flag is set in any of several key
places, including several places within the garbage
collector. If the preemption flag is set, JSCP calls the
function btPpreempt that causes SCHDto run. SCHD
then chooses the highest priority runnable thread, and
passes control to it.

RTOS

JVM Processes

Java Apps

Java
Threads

RTOS
Threads

Native Apps

Figure 3. The thread-to-thread mapping approach

RTM993.qxd 30-08-1999 09:31 Page 54

56 Copyright 1999 by Real-Time Magazine 99-3 (http://www.realtime-info.com)

JAVA

When the interpreter loop is running, instead of a timer,
JSCP counts the number of bytecodes that have been
executed. First, the system guesses an initial value for
the number of bytecodes that can be executed in the
user-specified time-slice period. This value is used in
a counter that is decremented within the interpreter’s
main loop. When the counter reaches zero, the
preemption function is called. In addition, the other
scheduling functions are performed, a check is made
to see how much time has elapsed, and an
adjustment is made to the new initial value of the byte-
code counter that better approximates the desired
time-slice interval. The bytecode count converges
rapidly to a good approximation of the time-slice
interval.

The JSCP thread scheduler (SCHD) can call a user-
specified idle function to support a device’s power sav-
ing function. SCHDcalls an idle function whenever
there are no runnable threads. The user-defined idle
function then blocks for a time specified by SCHDor
until it detects an external event. When either of the
above occurs, the idle function returns to SCHD.

CONCLUSION

Thread mapping methodology plays an important role
in the use of Java in embedded systems. The encap-
sulation technology in JSCP™, an enhanced Java™
Virtual Machine (JVM), has been specifically engi-
neered for embedded applications. JSCP’s encapsu-
lated design, its memory management system and its
native interface techniques alleviate many concerns
about embedded Java. With JSCP, a complete Java
environment can be added to an existing embedded
application without compromising that application.

Marius Gafen is responsible for all marketing activi-
ties at NSIcom. He previously held senior marketing
positions with telecommunications provider Arel
and held management and R&D positions with the
Israel Ministry of Defense for telecommunications
and software projects.
Mr. Gafen holds a Bachelor of Science Degree in
Electrical Engineering from the Technical Institute
of Israel in Haifa and is a marketing graduate of
Tel-Aviv University.

ADVANTAGES OF JVM ENCAPSULATION TECHNOLOGY

Encapsulation technology offers a number of interesting
advantages for embedded systems, including reduced
memory consumption and unlimited lightweight threads
that are safe to stop or suspend. JSCP’s dynamic C stacks
permit significantly smaller memory usage than task-
per-thread mapping methodologies. JSCP dynamically
expands the amount of memory allocated to a thread and
then reclaims it when it is no longer needed.

Reducing Memory Usage
One user application initially developed without JSCP,
involving a policy-based network management system
with 50 policies, each needing two threads, was run
repeatedly with fixed C stacks for the Java threads. On
each run, the size of the fixed C stack was reduced until a
stack overflow occurred. This technique revealed that a
minimum of 36 KB per thread was needed. Further analy-
sis revealed that the maximum stack size was reached
during initialization of a policy. Therefore, the total amount
of memory needed would have been 3.6 MB when a fixed
C stack size was used. Under JSCP, each thread was allo-
cated three pages (48 KB) at startup, and after the threads
had finished initialization, the C stack was cut back to
16 KB, thereby saving the user 2 MB of memory.

Benefits of Lightweight Threads
JSCP threads bear the same relationship to RTOS tasks
that threads on many desktop operating systems bear to
processes. For example, user threads in Solaris are not
visible to the underlying operating system scheduler, just
as JSCP threads are not visible to the scheduler of the
underlying RTOS.

The motivation for using threads this way in JSCP parallels
the rationale that originally drove operating system design-
ers to develop threads. For one thing, thread scheduling is
much faster than process scheduling because a thread
context is significantly smaller than a process context.
Additionally, threads share the same address space, so

caches do not need to be flushed when a thread context
switch occurs.

Overall, the advantage of JSCP’s lightweight threads is that
are less costly in terms of CPU cycles and memory usage
than the way threads are handled in task-per-thread
methodology.

No Limit to the Number of Java Threads
with JSCP

Some real-time operating systems constrain the number of
tasks that can be created due to limitations in the number
of control blocks they allocate. This would limit the number
of Java threads that could be created if each thread were
mapped to a task. Since Java is naturally thread intensive,
it is not unusual for applications to create large numbers
of threads. Standard Java class libraries, for example,
implicitly allocate many threads, as when an HTTP con-
nection is created or a request is made to load an image.
Because JSCP’s threading operates independently of the
underlying RTOS, JSCP does not suffer from this limitation.

Safely Killing/Suspending Threads
Versus Ownership of System Resources

Because system resources may be allocated to RTOS
tasks, if Java threads are mapped to tasks, these threads
may also own system resources. This makes stopping or
suspending these threads an unsafe operation. Although
it might be possible to use a flag to tell a thread to kill itself
gracefully after deallocating all system resources it owns, it
is not possible for a thread to know of the resources con-
sumed by class libraries in its behalf.

Threads in JSCP do not allocate system resources. All
resources external to the JSCP Virtual Machine (VM) are
owned by JSCP itself. No Java thread owns the resource
directly and thus it never can be in an RTOS critical sec-
tion. The JSCP VM is free to suspend or kill Java threads
without any side effects.

RTM993.qxd 30-08-1999 09:31 Page 56

57Copyright 1999 by Real-Time Magazine 99-3 (http://www.realtime-info.com)

WHY DOES WINDOWS NT NEED A

REAL-TIME EXTENSION?

M
any researchers have investigated the real-
time capabilities of Microsoft’s standard
Windows NT operating system (at the time this

article was written version 4.0 with SP4 was the current
version). All have arrived at the same conclusion:
although Windows NT may be able to provide a time-
ly response to events, the system architecture can
never guarantee fully deterministic behaviour [1].

One reason for the lack of guaranteed deterministic
behaviour has to do with the way Windows NT han-
dles interrupts. Windows NT interrupts cannot be con-
trolled by an application; instead, the Windows NT ker-
nel uses a FIFO mechanism to deal with interrupt
requests. Each interrupt request (IRQ) results in a call
to a small Interrupt Service Routine (ISR), which has all
interrupts disabled; this ISR generates an NT kernel
request to perform a Deferred Procedure Call (DPC),
which is placed into a FIFO queue of all outstanding
DPC requests. This method of deferring interrupts via a
FIFO queue can be disastrous. For example, when a
system is flooded with mouse interrupts (which are
rarely important for stable system operation) the FIFO
queuing of pending interrupts (DPCs) can cause
uncontrollable delays in the han-
dling of other more critical interrupts.
Avoiding the FIFO queue by doing
all processing inside the ISR is not
acceptable either, because it makes
the system unresponsive to all inter-
rupts (due to the fact that all inter-
rupts are disabled during a
Windows NT ISR), resulting in a sys-
tem with proper behaviour for one
interrupt only.

Some system designers may claim
that they have tuned the total
Windows NT system, including
device drivers and application pro-
grams, in order to achieve accept-
able determinism. But with the cur-
rent rate of Service Packs and new
releases of the operating system,
plus the need for system feature
adjustment typically required by cus-
tomers, it becomes highly improba-
ble that such tuning can be effective
in the long term, after a few cycles of
updating and modifications.

There are essentially two methods for correcting the
lack of determinism in Windows NT:

• Use a separate computer system running a proper
real-time operating system (RTOS) and connect it
by a networking link to the Windows NT system.

• Extend the Windows NT system in such a way that
at least part of the system provides the desired level
of determinism.

The first approach may look attractive because there
are many reliable and powerful RTOSes available from
various suppliers. A disadvantage is that the application
developer has to work with two different operating sys-
tems and their development environments The most
significant disadvantage is cost: even the smallest
application requires two complete hardware systems.

Extending Windows NT is an approach taken by only a
few suppliers. Modifying the Windows NT kernel would
be the best method, but is not a realistic option
because the Windows NT kernel source code is not
available and Microsoft has never expressed any intent
to make this change to it’s kernel – such a kernel
change could even effect current Windows NT applica-
tions in a negative sense! Thus, another approach must
be used to extend the determinism of Windows NT.

By Jan Baan,
INtime Application Consultant,
RadiSys BV

Distributed Real Time Computing
with Windows NT

Windows NT by itself may not be the optimal solution for real-time computing, but there are various
options to extend the operating system. One of these, RadiSys Corporation’s INtime real-time exten-
sion for Windows NT has been enhanced to provide distributed options, resulting in a highly scaleable
feature set. This article discusses why the feature set has been extended and how it effects scalability.

Distributed Real Time Computing
with Windows NT

Win 16

Win 32
subsystem

OS/2
subsystem

Security
subsystem

User Mode

Kernel Mode

POSIX
subsystem

NTVDM

Executive Services

Microkernel

Hardware Abstraction Layer (HAL)

Hardware

Object
Manager

Security
Reference
Monitor

Process
Manager

Local
Procedure

Call
Facility

Virtual
Memory
Manager

I/O Manager

Cache
Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Window
Manager

(WIN32K.SYS)

Graphic
Device Drivers

System Services

MS-DOS

Figure 1. Windows NT architecture

WINDOWS-NT

RTM993.qxd 30-08-1999 09:31 Page 57

